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2-torus. By factorizing the twisted partition function in the open string channel we obtain
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alternative method for computing these couplings that does not rely on the stress-energy

tensor technique.
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1. Introduction

It is well known that various interesting string vacua are described by free Conformal Field

Theories (CFT) with twisted (i.e. periodic up to a phase) boundary conditions on the

world-sheet fields. This happens in the case of orbifolds for closed strings [1], and, with the

doubling trick, also for the open strings stretched between intersecting [2] or magnetized

D-branes [3]. In these cases the 2-dimensional equations of motions take the usual form of

the free wave equation, but the boundary conditions on the world-sheet fields can change;

in particular this happens in the interactions between closed strings belonging to different

twisted sectors or open strings stretched between different D-branes. The CFT operators

implementing a change in the boundary conditions for the bosonic coordinates are called

twist fields and are rather complicated objects from the world-sheet point of view. In

the following we will use σε to indicate a twists field changing the boundary conditions

of a complexified bosonic coordinate by a phase e2πiε. In superstring theories, a similar

pattern is present also in the fermionic sector; however in this case the operators changing

the boundary conditions (called spin fields) can be described in terms of simple free fields

thanks to the bosonization equivalence. In this paper we will exclusively focus on the

bosonic twist fields for which no simple free theory description is known.

The couplings among 3-twist fields are important in various context, in particular in

string compactifications that display realistic phenomenological features, where they are

directly related to the Yukawa couplings of the low energy effective action. The twist fields

correlators are usually computed by using the techniques introduced in [4]. In the context

of closed string theory on orbifolds these techniques were applied to the computation of
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Yukawa couplings in [5]. More recently other semi-realistic string vacua have been under

intense study: in this case the standard model fields are realized by means of open strings

stretched between intersecting or magnetized D-branes. From a CFT point of view, the

main ingredient in the determination of the Yukawa couplings in these models is the evalu-

ation of a 3-twist coupling. By following the prescription of [4], the twist-fields correlators

in open string setups have been studied in detail1 by [7, 8].

Another very important quantity that can be computed in string configurations with

twisted boundary conditions is the partition function. This can be seen as a contribution

to the cosmological constant and thus serves, in orbifold compactifications, as a check of

whether supersymmetry is broken or not in the twisted sectors [9]. In open string con-

figurations the partition function captures the D-brane dynamics and string coordinates

with non-trivial monodromies appear when the D-branes support constant electro-magnetic

fields [10] or have constant velocity [11]. Twisted partition functions are of interest also in

topological string theory and Heterotic strings, see for example [12, 13] for recent applica-

tions.

In this paper we use the operator formalism [14, 15] to compute the twisted partition

function for open bosonic strings in a generic toroidal compactification. For concreteness,

we work in the setup of open strings stretched between magnetized D-branes, where the

parameters εi depend on the magnetic fields on the D-branes. This setup is more general

than the one usually encountered in orbifold compactifications, because the twists εi are

generically non-rational numbers. In this paper we make two simplifying assumptions:

we require that the D-branes wrap only once the geometrical torus and impose that the

world-volume magnetic fluxes commute, see (3.1). While the first assumption provides

just a technical simplification, the presence of non-abelian backgrounds would make the

problem rather more difficult. We hope to relax these hypothesis in a future work.

We will start our computation in the closed string channel, where the main ingredient

is the boundary state describing a magnetized D-brane (see [16] and refs. therein). We

follow the approach of [17] and build a surface with g + 1 borders starting from a vertex

describing the interaction among g + 1 closed strings. The two main novelties in the

present computation are the use of magnetized boundary states and the analysis of the

contribution of winding or Kaluza-Klein modes present in the compact case. Then by

using the results of [18, 19] we exploit the modular properties of string amplitudes to

rewrite the same diagram with magnetized D-branes in the open string channel. All our

expressions are written in terms of geometrical quantities that commonly appear in the

study of Riemann surfaces, such as the period matrix or the Riemann class. In particular,

in our case the Prym differentials, which are 1-forms with non-trivial monodromies, play

a crucial role. The operator formalism naturally gives for all these quantities, including

the Prym differentials [18], an explicit expression in terms of sums or products over the

Schottky group. Even if we use as starting point a setup with magnetized D-branes, we

can easily perform a T-duality at any step of the computation. So, in our approach, the

computations in the intersecting and in the magnetized descriptions are essentially on the

1The first analysis of the twist fields correlators in the open string case was given in [6]
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Figure 1: 1a represents the twisted 2-loop partition function in the open string channel in a

generic point of the world-sheet moduli space: on the three borders there are different magnetic

fields Fi; 1b is the degeneration limit we are interested in, which is obtained by focusing on the

corner of the world-sheet moduli space defined in (4.1); 1c is the factorization of 1b into two twisted

3-string vertices and three propagators: this is obtained by focusing only on the leading term in

the expansion of the previous point .

same footing. In principle, for rational twists εi, an expression for the twisted partition

function could be derived from the higher genus correlation functions studied in [20], but,

to the best of our knowledge, this has not been done explicitly.

In a second part of the paper we specialize to the T 2 case for g = 2 and show explicitly

that the twisted partition function can be used also to derive the correlators among three

twist fields and thus the Yukawa couplings in models with magnetized D-branes. The idea

is simple: instead of following [4] and factorizing the 4-point tree-level amplitude, we derive

the couplings among twist fields by factorizing the planar 2-loop vacuum diagram in the

open string channel as depicted in figure 1.

This alternative option was already proposed in [21], where the formal properties of

higher loop amplitudes were studied. However this program has not been carried out

explicitly in any concrete case and probably the main stumbling point has been so far

the lack of explicit enough formulae for the multiloop twisted partition function itself. At

first sight, the idea of factorizing loop instead of tree amplitudes may seem an unnecessary

complication. Actually it turns out that for certain purposes it is technically easier to

follow this path. For instance, in the case of the multiloop partition function, it is easier

to control the overall εi-dependent normalization, since it is directly related to the tension

of the D-branes. Moreover the computation of the partition function in our formalism

is completely algorithmic and does not require any space-time intuition. In fact we will

derive the Yukawa couplings directly in a type IIB setup, thus providing, without the need

of any T-duality, a string counterpart of the field theory computation of ref. [22]. However,

as we already said, T-dualities can be easily performed in our approach. So one can see

that, in a type IIA setup, the zero-mode contribution to the partition function depends on

the Kähler moduli and, after factorization, reproduces exactly the world-sheet instanton
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contribution to the Yukawa couplings for intersecting brane configurations.

The structure of the paper is the following. In section 2 we summarize the main proper-

ties of open and closed bosonic strings in toroidal compactification and fix our conventions,

see [23, 24] for more details. In section 3 we generalize the approach of [19, 25] and compute

the twisted partition function on a T 2d for a planar orientable Riemann surface with g + 1

borders and no handles. We first work in the closed string channel where the amplitudes

is obtained by sewing together g + 1 boundary states on a sphere. Then we perform a

modular transformation and translate the result in the open string channel. This is done

by using the generalization of the product formulae for the Theta functions derived in [18].

In section 4 we focus on the g = 2 partition function for a 2-torus and study the limit

where the surface degenerates in two disks connected by three open string propagators. As

suggested by figure 1, this allows us to derive the 3-string coupling among twisted states.

We first consider the non-zero mode contribution which is the only one present in the un-

compact space. The contribution to the 3-twist couplings derived in this way is usually

indicated as the quantum (from the world-sheet point of view) part. Then we study the

factorization of the full twisted partition function on T 2. In this way we obtain the full

3-twist couplings, including what is usually called the classical contribution. Our results

for these couplings are in agreement with previous works [5, 7, 8, 22], thus providing a very

non-trivial test for the expression of the twisted partition function we obtained.

2. Open and closed strings on magnetized tori

The setup we consider is that of a toroidal compactification T 2d of bosonic string theory

with g + 1 space filling D-branes labeled by the index i = 0, . . . , g. The closed strings

feel the standard geometrical metric GMN and the NS-NS BMN field that we will take

to be constant. Our coordinates indicated with the indices M,N, . . . are parallel to the

lattice defining the torus and have period 2π
√

α′ (this is the so-called integral basis).

The end-points of the open strings are charged under the gauge invariant combination

Fi = B + 2πα′Fi between the B field and the U(1) magnetic field Fi living on the D-brane

considered. We restricts ourselves to the case where also the magnetic fields are constant

so that the string world-sheet action is quadratic. Notice that, in the integral basis, the

elements of Fi are quantized

Fi MN =
1

2πα′
piMN

liM li N
, i = 0, 1, . . . , g, (2.1)

where li M is the winding number of the D-brane along the direction M and piMN is the

magnetic flux in the plane MN . If an open string is stretched between the D-branes k and

l, with gauge fields Fk and Fl, then the boundary conditions on the open string coordinates
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xM (z, z̄) are specified by the reflection matrix2 Ri:

∂xM (z, z̄)
∣∣∣
σ=0

= (Rk)
M
N ∂xN (z, z̄)

∣∣∣
σ=0

,

∂xM (z, z̄)
∣∣∣
σ=π

= (Rl)
M
N ∂xN (z, z̄)

∣∣∣
σ=π

(2.2)

with Ri =
(
G −Fi

)−1 (
G + Fi

)
, (2.3)

where, as usual, z = eτ+iσ. Then the mode expansion of xM (z, z̄) can be written in terms

of a single meromorphic function XM (z) whose monodromy properties are encoded by the

matrix Rlk:

xM (z, z̄) = qM +
1

2

[
XM (z) + (Rk)

M
NXN (z̄)

]

XM (e2πiz) = (Rlk)
M
N XN (z) ,

with Rlk ≡ R−1
l Rk . (2.4)

When the gauge fields Fk and Fl are non-zero but equal, then we see that XM (z) is

periodic and we are in the so-called non-commutative setup. In this case the zero-modes

qM develop non-trivial commutation relations [27] proportional to (RMN
l − RNM

l )/4 and

in general all open strings modes are contracted with the open string metric: GMN
open ≡

GMN/2 + (RMN
l + RNM

l )/4. The multiloop partition function and amplitudes for bosonic

strings in this background were computed in [28].

When Fk 6= Fl, the meromorphic function XM (z) has non-trivial monodromy proper-

ties encoded by Rlk. Since all Ri’s are 2d × 2d dimensional real matrices satisfying

tRi GRi = G , i = 0, 1, . . . , g, (2.5)

the eigenvalues of the monodromy matrix Rlk are just pairs of complex conjugate numbers

of norm 1. Thus these eigenvalues can be represented by phases and we can extract

unambiguously d independent parameters that will be indicated3 by e2πiεa
lk , a = 1, 2, . . . , d.

The mode expansion of X(z) is more easily written in the (complex) basis where the

monodromy matrix is diagonal; we indicate the meromorphic fields in this basis by Za(z).

The periodicity properties imply that for the string stretched between the branes k and l

the modes are shifted by ±εa
lk:

∂Z a(z) = −i
√

2α′

( ∞∑

n=1

αa
n−εa

lk
z−n+εa

lk−1 +

∞∑

n=0

α† a
n+εa

lk
zn+εa

lk−1

)
, a = 1, 2, . . . , d, (2.6)

with commutation relations

[
αa

n−εa
lk

, α† b

m−εb
lk

]
= (n − εa

lk) δab δn,m ,
[
αa

n+εa
lk

, α† b

m+εb
lk

]
= (n + εa

lk) δab δn,m . (2.7)

The vertex operators describing the physical states of these twisted open strings contain

a product of twist fields
∏d

a=1 σεa
lk

, each one twisting the string coordinate defined by the

2We follow the conventions of [26]
3The sign ambiguity in the exponent can be fixed by requiring for instance εa

01 ≥ 0.
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corresponding Rlk eigenvector. This implies that the open string spectrum depends on

G, B and the Fi’s: for instance the first state (which is the usual open string tachyon in

absence of fluxes) has a mass square given by

α′M2
lk = −1 +

d∑

a=1

εa
lk(1 − εa

lk)/2 . (2.8)

The ε-dependent shift with the respect to the usual value is expected, since it is nothing

else than the contribution to L0 coming from the conformal weight of each twist field σεa
lk

.

The zero-mode structure in this sector is somewhat subtle: the commutation relations

are [qM , qN ] = (F−1)MN and this yields, in toroidal compactification, a finite dimensional

degeneracy for each string state [3]. In fact the zero-mode part of the string vertex oper-

ators should encode the same information of the field theoretic wave-functions describing

a charged particle on a magnetized torus, and in field theory one finds, for a fixed en-

ergy, finitely many inequivalent wave-functions [22]. In our approach we will bypass these

subtleties and will not need to deal with the zero-mode structure of the open string vertices.

Going to the closed string sector, we will use the following conventions:

xM
cl (z, z̄) =

XM
cl (z) + X̃M

cl (z̄)

2
,

where XM
cl (z) = xM − i

√
2α′αM

0 ln z + i
√

2α′
∑

m6=0

αM
m z−m

m
, (2.9)

with the commutation relations

[αM
m , αN

−n] = nδn,mGMN , and [xM , αN
0 ] = i

√
2α′GMN , (2.10)

and similarly in the right-moving sector. When convenient, we will also use the normalized

oscillators an or ãn, with αn =
√

nan, α−n =
√

na†n for n > 0 and α0 = a0.

From the closed string point of view, the D-branes are described by boundary states

|Bi〉, that enforce an identification between the left and the right moving modes (2.2). In

order to write this identification in the closed string channel, it is convenient to map the

upper-half complex plane z into the circle of unit radius w = −(z − i)/(z + i). Thus we get

Eq. (2.2) ⇒ ∂xM (w, 1/w̄)
∣∣∣
τ=0

= −(Ri)
M
N ∂xN (w, 1/w̄)

∣∣∣
τ=0

. (2.11)

At the level of closed string modes this condition reads

[
(G + Fi)MN αN

n + (G −Fi)MN α̃N
−n

]
|Bi〉 = 0, ∀n ∈ Z . (2.12)

Notice that the closed strings modes are integer as usual, and the magnetic fields Fi enter

only in the gluing conditions. Thus, contrary to what happens for the twisted open strings,

the closed string spectrum is unaffected by the magnetic fields. In particular, the allowed

winding and Kaluza-Klein modes are encoded in the Narain lattice which depends only on
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G and B. In our conventions the eigenvalues of the operators α0 and α̃0 are

(α0)
M =

GMN

√
2

[
nN + (GNN ′ − BNN ′)mN ′

]
,

(α̃0)
M =

GMN

√
2

[
nN − (GNN ′ + BNN ′)mN ′

]
. (2.13)

In terms of the Kaluza-Klein and windings mode, the identification (2.12) enforced by the

boundary state (for n = 0) is independent of the closed string background and reads simply

nM = −2πα′(Fi)MNmN . (2.14)

Let us end our brief comments on the string spectrum on magnetized tori by noticing

that it is easy to generalize this analysis to all other configurations that are connected

by T-duality to the case of magnetized D-branes. A generic T-duality transformation is

encoded in a O(d, d, Z) matrix

T =

(
a N

M bMN

cMN dM
N

)
, with tc a = tb d = 0 , ta d +tc b = 1. (2.15)

where a, b, c and d are 2d× 2d matrices. The matrix T acts on the combination G + B as

follows (see [24] for a review4)

(G′ + B′) = [a(G + B) + b] [c(G + B) + d]−1 . (2.16)

The same T-duality transformation is realized at the level of oscillators by multiplying

the left and right-moving modes by specific matrices: αn ≡ T+α′
n, α̃ ≡ T−α̃′

n, where the

primed oscillators are those obtained after the T-duality and

(T+)MN =
{

[d + c (G + B)]−1
}M

N
, (T−)MN =

{[
d − c t(G + B)

]−1
}M

N
. (2.17)

Notice that by using (2.15) one can prove that tT± GT± = G′. From (2.2) we immedi-

ately see that upon T-duality the reflection matrices change in a very simple way Ri →
R′

i = T−1
− RiT+. This implies that the monodromy matrices Rlk change by a similarity

transformation and that the twists εlk are invariant under T-duality. In particular, we can

easily describe within the formalism of reflection and monodromy matrices also D-branes

at angles. This situation is characterized by symmetric reflections matrices that square to

one. If all Ri’s can be brought in this form by means of the same T-duality transformation

T , then it means that the D-brane setup can be geometrized completely and described in

terms of D-branes at angles.

3. Twisted partition function on T 2d

3.1 Twisted partition function in the closed string channel

The vacuum diagram we will compute has g+1 borders on different D-branes and no handles

or crosscaps. In order to avoid the subtleties of the case with multiple wrappings [29], we

4One has to take into account that in our conventions αn and α̃n are exchanged with respect to [24]
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will take all liM ’s in (2.1) to be equal one. Moreover we will take a second simplifying

hypothesis and focus on the case of commuting fluxes. In formulae, our setup will satisfy

liM = 1 , and [G−1Fi, G
−1Fj ] = 0 , ∀i, j = 0, . . . , g . (3.1)

where G and Fi are viewed as space-time matrices. Commutativity implies that all re-

flection matrices Ri can be diagonalized simultaneously and so the eigenvalues εa
lk of the

monodromy matrices Rlk are simply εa
lk = ea

k − ea
l , a = 1, 2, . . . , d, where e2πiea

i are the

eigenvalues of Ri.

The computation of this partition function in the closed string channel can be per-

formed by using the boundary states formalism. This approach was used in [17] for the

case of unmagnetized D-branes and here we will follow the same steps, the main difference

being that in the present case the reflection matrices Ri contain generic phases and not

just ±1. If we start from an off-shell closed string vertex in the z coordinates (A.4) de-

scribing the emission of g + 1 states and insert a first boundary state, then we get a disk

parametrized as the upper half complex plane, where the real axis represents the boundary

we have just inserted. On the contrary if we had worked in the w coordinates (2.11), we

would have obtained the disk of unit radius. Let us focus on the z coordinates and saturate

the remaining g off-shell states with other boundary states. Each insertion cuts out a small

disk in the upper half complex plane plus an image in the lower part and the circle and

its image are identified. These non overlapping disks are completely specified by the 2× 2

matrices

Scl
µ =

(
acl

µ bcl
µ

ccl
µ dcl

µ

)
≡ 1

2
√

qµ(χµ − χ̄µ)

(
χµ − qµχ̄µ −|χµ|2(1 − qµ)

(1 − qµ) qχµ − χ̄µ

)
, (3.2)

with µ = 1, . . . , g. The centers of the disks are in aµ/cµ (and −dµ/cµ for the images) and

the radii (common to the disks and their images) are
√

qµ|χ̄µ − χµ|/(1 − qµ). Thus we get

a world-sheet parameterization as in figure 2b, with g + 1 borders which are the real axis

plus the g circles specified above. The (real) multipliers qµ’s and the (complex) fixed points

χµ’s of eq. (3.2) yield 3g real parameters; as usual, three real parameters among the χµ’s

can be fixed arbitrarily thanks to the SL(2, R) invariance, that in this context is simply

the freedom to change all Scl
µ by a similarity transformation with a SL(2, R) matrix. So we

get the correct dimension (3g − 3) for a the moduli space of a disk with g + 1 boundaries.

Notice that the parameters qµ are directly related to the eigenvalues of the Scl
µ ’s (which are

{√qµ, 1/
√

qµ}) and so cannot be fixed by exploiting the SL(2, R) invariance. The infinite

group freely generated by the g matrices (3.2) is called Schottky group (for a disk with

g + 1 boundaries). A generic element will be indicated by T cl
α and has the same form of

the generators (3.2), so for each T cl
α we can derive a real qα and a complex χα, which are

calculable functions of the moduli qµ, χµ. In the operator formalism the interaction vertices

are written in terms of a simple representation of the Schottky group [15]. Sewing together

vertices and boundary states amounts to multiply together representations of Schottky

elements, so it comes to no surprise that the final results for the partition function is given

in terms of sums and products over the Schottky group. In the case of interest for us, the
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Figure 2: 2a represents the partition function under study from a space-time point of view; 2b is

a representation from the world-sheet point of view: the world-sheet is the upper half part of the

complex plane that is outside all disks.

sewing procedure carry also a dependence on the space-time matrices Ri contained in the

boundary states. Here we will recall only the main features of the computation and the

final result, while we leave to the appendix A the discussion of some technical steps.

For the non-zero mode contributions (αn and α̃n, with n 6= 0) there is a nice pairing

throughout the computation between the Schottky matrices Scl
µ and the spacetime matrices

Sµ ≡ R0µ: each (Scl
µ )±1 is accompanied by the corresponding S±1

µ . In our case all Sµ’s can

be diagonalized simultaneously, thus the non-zero mode contribution to vacuum diagram

can be written in terms of the eigenvalues of T cl
α and those of Sµ. The first ones are

basically the multipliers qα, while the second ones are just e±2πiεa
µ , with εa

µ ≡ εa
0µ = ea

µ −ea
0,

for µ = 1, 2, . . . , g. Notice that from the world-sheet point of view the eigenvalues of S±1
µ

are simply parameters that twist the periodicity conditions of the string coordinates along

the bcl-cycles, that are those connecting each circle in figure 2 with its own image. This

twist is easily tractable within the operator formalism [30, 18]. In formulae, the integrand

for the twisted partition function can be written in terms of the g-loop untwisted result

(all Fi = 0) times d factors of [Ra (~εa)]clg defined as follows

[Ra (~εa)]clg =

∏
α
′ ∏∞

n=1(1 − qn
α)2

∏
α
′ ∏∞

n=1

(
1 − e−2πi~εa· ~Nαqn

α

)(
1 − e2πi~εa· ~Nαqn

α

) . (3.3)

In the vector ~εa we have collected the εa
µ, µ = 1, 2, . . . , g; also ~Nα is a vector with g integer

entries: the µth entry counts how many times the Schottky generator Scl
µ enters in the

element of the Schottky group T cl
α , whose multiplier is qα (for example Scl

µ contributes 1,

while (Scl
µ )−1 contributes −1). The primed product over the Schottky group means product

over primary classes, that is one has to take only the elements that cannot be written as

power of another element of the group; moreover one has to take only one representative

for each conjugacy class (class of elements that are related by cyclic permutation of their

constituents factors). In the non-compact case, the oscillator modes provide the only non-
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trivial contribution to the twisted partition function [30]

Zcl
g (F )|uncomp. =

(
g∏

i=0

√
Det(1 − G−1Fi)

)∫
[dZ]clg

d∏

a=1

[Ra (~εa)]clg , (3.4)

where [dZ]clg is the integrand of the usual (Fi = 0) partition function in Minkowski space

and the superscript cl is just to recall that we are working in the closed string channel.

Notice that the overall coefficient is just the usual Born-Infeld Lagrangian rescaled by a

factor of
√

G, since all Fi-independent normalizations are included in [dZ]clg . Eq. (3.4)

provides a direct generalization of the 1-loop result [31] to the multiloop case. In fact in

this case there is only one conjugacy class and the product
∏

α
′ is absent. So (3.3) reduces

to

[Ra (εa)]clg=1 = −2 sin(πεa)
η3(τ cl)

θ11(εa, τ cl)
, (3.5)

where η and θ11 are the usual Dedekind and odd Theta function with q = e2πiτcl
.

Let us now consider the zero-mode contributions that are present in toroidal com-

pactification. Each boundary state |Bi〉 contains a Kronecker delta selecting a particular

combination of winding and Kaluza-Klein modes that couples to the D-brane, see eq. (2.14).

The closed string interaction vertex (A.4) contains two independent Kronecker delta’s over

winding and Kaluza-Klein modes. Thus the zero-mode contribution arises only from those

modes that satisfy simultaneously all these conditions. By expressing all α̃0 in terms of α0,

one can check that the zero-modes must satisfy the following condition:

g∑

µ=1

(1 − Sµ) αµ
0 = 0 . (3.6)

In a long but straightforward computation one can follow the zero-mode contributions

in the computation where the closed string vertex (A.4) is saturated with the boundary

states. This basically amounts to follow what was done in the appendix D of [15] and

take into account the modifications induced by the space-time matrices Sµ. The tricky

point is that the pairing between these Sµ and the Schottky generators Scl
µ is spoiled in

this part of the computation. This is due to (A.3) which implies that the matrices Dnm

appearing in the vertex and in the boundary states do not provide a true representation of

the Schottky group in the zero-mode sector. In the appendix A we provide some details of

this computation, here let us give the final result for the zero-mode sector written in terms

of the eigenvalues α0 of the left-moving momentum

exp





1

2

g∑

µ,ν=1

αµ
0GC(1)

µν αν
0



 = exp





1

2

g∑

µ,ν=1

αµ
0G


S−1

µ

Scl
µ (w)∫

w

ζν(z)dz


 αν

0





. (3.7)

The ζν(z)’s are Prym differential, i.e closed meromorphic 1-forms, periodic along the acl
µ

cycles and with fixed monodromies along the bcl
µ -cycles (see Fig 2)

ζν

(
Scl

µ (z)
)
d
(
Scl

µ (z)
)

= Sµζν(z)dz . (3.8)
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The sewing procedure gives an explicit expression for these 1-forms in terms of a sum over

the Schottky group:

ζν(z) =
∑

α

TαSν

[
1

z − T cl
α Scl

ν (z0)
− 1

z − T cl
α (z0)

]
, (3.9)

where Tα is the space-time counterpart of Tα, with each Scl
µ ’s replaced by a Sµ’s. These

Prym differentials were already found in [18] in the study of the twisted determinants for

the Dirac operator, or in other words the partition function of a fermionic b, c system of

conformal weight (1, 0). The same pattern appears also in the untwisted case with the

usual Abelian differentials (which are the limit of the ζµ(z)’s when all Sµ = 1) and the

reason is obviously that we are dealing with object of conformal weight 1 both in the case of

the above mentioned b, c system and in that of the string coordinates ∂X. Riemann-Roch

theorem implies that it is not possible to find g such Prym differentials that are regular

and in fact our definition depends on an arbitrary point z0, where (3.9) has a simple pole.

However it is not difficult to check that, thanks to the delta function (3.6), the exponent

in (3.7) can be rewritten as

{
. . .

}
=

1

2

g−1∑

µ̂,ν̂=1

αµ̂
0GS−1

µ̂




Scl
µ̂ (w)∫

w

Ων̂(z) − 1 − Sµ̂

1 − Sg

Scl
g (w)∫

w

Ων̂(z)


 αν̂

0 , (3.10)

where Ων̂(z) = ζν̂(z) − 1 − Sν̂

1 − Sg
ζg(z) , (3.11)

with ν̂ = 1, . . . , g − 1 ,

where we have supposed Sg 6= 1; we need not to worry about the ordering of the matrices

Sµ since they all commute. In ref. [18] it is shown that in (3.10) the dependence on

z0 disappears.5 Therefore the Ων̂(z)’s are a set of g − 1 regular Prym differential and

provide a complete basis for this space. This is the basis that is naturally selected by the

sewing procedure. It is also possible to check that (3.10) does not depend on the the curve

representing the bcl
µ̂ -cycles, i.e. connecting w and Scl

µ̂ (w). First, Ων̂(z)dz is a closed and

regular differential so the exact form of the path is immaterial. Then we can check the

independence of the point w, by taking the derivative of the exponent with respect to w

and showing that it is zero. This is more easily done by using the form (3.7). Thanks to

the periodicities (3.8). we get

d

dw

{
. . .

}
=





1

2

g∑

µ,ν=1

αµ
0G(1 − S−1

µ )ζν(z)αν
0



 , (3.12)

where the sums over µ and ν are decoupled. Then by using (2.5) and the presence of

the constraint (3.6) in the integrand one can see that (3.12) vanishes implying that the

exponential contribution due to the zero-modes is independent of w. The independence

5This is also evident from (3.15).
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of (3.10) of w means that the integrals span a closed contour on the branched Riemann

surface. In terms of the basic cycles of the closed string parameterization the integral

in (3.10) forms the closed contour bcl
µ̂ bcl

g (bcl
µ̂ )−1(bcl

g )−1. We will depict this path in the open

string parameterization, see figure 5.

Thus we can put together the oscillators and the zero-mode contribution and write the

full bosonic partition function of figure 2 for magnetized bosonic D-branes on a T 2d

Zcl
g (F ) =

(
g∏

i=0

√
Det(1 − G−1Fi)

)∫
[dZ]cg

d∏

a=1

[Ra (~εa)]clg
∑

m

δ[(1 − Sµ)αµ
0 ]

× exp



πi

g−1∑

µ̂,ν̂=1

αµ̂
0GS−1/2

µ̂ Dµ̂ν̂S1/2
ν̂ αν̂

0



 , (3.13)

where the α0’s are functions of the windings m as dictated by eqs. (2.13) and (2.14) and

Dµ̂ν̂ =
1

2πi
S−1/2

µ̂




Scl
µ̂ (w)∫

w

− 1 − Sµ̂

1 − Sg

Scl
g (w)∫

w


Ων̂(z)dz S−1/2

ν̂ , µ̂, ν̂ = 1, 2, . . . , g − 1 .

(3.14)

In the special case of a two-dimensional torus, T 2, our (3.10) is directly connected to the

results obtained in [12]. Let us see give some more details to see how the connection

between the two formulations works.

The 1-forms ζν(z)dz and Ων̂(z)dz display a space-time dependence that can be more

easily expressed in the basis where all the monodromy matrices Rµ are diagonal. In this

eigenvector basis also ζν and Ων̂ are diagonal and each entry ζ±~εa

ν or Ω±~εa

ν̂ depends on

the eigenvalues e±2πi~εa
of the corresponding eigenvector. The Ω±~εa

ν̂ dz are closely related to

the 1-forms ω’s of [12]. In fact one can see that their ωµ̂ corresponds to our combination

e−πiεµ̂Ω~εa

µ̂ /(2πi). In particular one can recover the approximated expression (A.35) of [12]

by rewriting the Prym differential to be inserted in (3.11) in the following form [18]6

ζ~εa

ν (z) =
∑

α

(ν)
e2πi(~εa· ~Nα+εa

ν)

[
1

z − T cl
α (χν)

− 1

z − T cl
α (χ̄ν)

]

+(1 − e2πiεa
ν )

∑

α

e2πi~εa· ~Nα

[
1

z − T cl
α (z0)

− 1

z − T cl
α (aα

ν )

]
, (3.15)

and by taking in the sums only the contribution of T cl
α = 1.

In [12], the zero-mode contribution to the twisted partition function is computed in a

IIA setup where D-branes intersect on a T 2. By performing a T-duality we can rewrite the

exponential term in (3.13) in this language. On a T 2 we can write the metric and the B

field in the integral basis as follows

G =
T2

U2

(
1 U1

U1 |U |2

)
and B =

(
0 −T1

T1 0

)
, (3.16)

6In the first line,
P

α
(ν) means that in T cl

α the last factor on the right cannot be a positive or negative

power of Scl
ν ; in the second line, aα

ν = χν if T cl
α is of the form T cl

α = T cl
β (Scl

ν )l with l ≥ 1, while aα
ν = χ̄ν

otherwise.
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where T and U are the Kähler and complex structure of the torus. This parameterization is

very convenient in the discussion of T-duality transformations. Indeed, a T-duality along

the x = x1 axis amounts just to the exchange T ↔ U , while a T-duality along y = x2

corresponds to T ↔ −1/U . For our computation, we will need two other matrices:

2πα′Fi =

(
0 fi

−fi 0

)
, and E =

√
T2

2U2

(
1 U

1 U

)
, (3.17)

where the magnetic fields fi’s are integers as consequence of (2.1) and (3.1), and E is

the Vielbein matrix transforming the real integral coordinates into the complex ones that

diagonalize the Ri’s. In the complex basis each element of D (defined in (3.14)) is a

diagonal space-time matrix. By comparing our conventions and those of [12] we see that

its first component Dµ̂ν̂(ε) agrees with the definition given in the second line of (A.16)

of [12]. The second component has, of course, opposite twists and will be indicated by

Dµ̂ν̂(−ε). If we use (2.13) and (2.14), we can re-express the left momentum αi
0 in terms of

the integer windings

Eαi
0 =

1√
2
EG−1(G−B−2πα′Fi)mi =

|vi|√
2
R

′ −1/2
0 S

′ −1/2
i

|U |√
T2U2

Emi , i = 0, 1, . . . g, (3.18)

where the primed matrices are written in the complex basis, where they are diagonal, mi

is a column vector with the windings m1
i , m2

i , and |vi| is the T-dual (along y) of the same

quantity appearing in [12]

|vi| =

√
U2

|U |2
|T |2
T2

|i(fi − T1) + T2|
|T | . (3.19)

By using (3.14) and (3.18) into (3.13) for the T 2 configuration under study we see that the

exponent in (3.13) can be rewritten as

πi

4
(m1

µ̂ + Ūm2
µ̂)

[
Dµ̂ν̂(ε) + Dν̂µ̂(−ε)

]
(m1

ν̂ + Um2
ν̂)
|U |2
U2

2

|vµ̂||vν̂ | . (3.20)

By using the properties of D(±ε) derived in eqs. (A.14, A.15, A.18) of [12], one can check

that D(ε) + tD(−ε) coincides with the double of the matrix τ defined in that paper and

that, after a T-duality U ↔ −1/T , (3.20) agrees with (5.18) of [12], apart from an overall

factor of 1/2. By using the same equations of [12], one can also get the interesting identity:

Dµ̂ν̂(ε) − Dν̂µ̂(−ε) = 2i
sin(πεµ̂) sin(πεµ̂ − πεg)

sin(πεg)
, (3.21)

that will be checked in section 4.2 for g = 2, in the degeneration limit of the open string

channel.

3.2 Twisted partition function in the open string channel

The aim of this section is to perform a modular transformation and to rewrite the re-

sult (3.13) in the open string channel. Pictorially this map transforms the world-sheet of
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Figure 3: 3a is a space-time representation of the same partition function of figure 2 in the open

string channel; 3b is the corresponding world-sheet surface in the Schottky parametrization.

figure 2 into the one of figure 3. Again the Schottky parameterization of the world-sheet

in figure 3b is completely specified in terms of g 2 × 2 matrices7

Sµ =

(
aµ bµ

cµ dµ

)
≡ 1√

kµ(ηµ − ξµ)

(
ηµ − kµξµ −ηµξµ(1 − kµ)

(1 − kµ) kµηµ − ξµ

)
, (3.22)

where now the fixed points η , ξ (which are the analogue of χ , χ̄ of (3.2)) are all real. The

open string world-sheet is the upper half part of the complex plane that is outside all the

circles defined by the Sµ’s as explained after eq. (3.2). These circles are identified pairwise

(see figure 3b).

As usual, the modular transformation we are interested in is non-analytic in the Schot-

tky parameters. This is already manifest in the one loop case where we have ln q = 4π2/ ln k.

In order to circumvent this technical problem we follow the approach used in [19, 25] for

the twisted partition function in Minkowski space. We first rewrite the products over the

Schottky group in terms of genus g Theta functions and other geometrical object such

as the Prime Form. This can be done thanks to the identities derived in [18] which are

consequence of the equivalence between fermionic and bosonic theories in two dimensions.

In this description we can perform explicitly the modular transformation that exchanges

the a and the b-cycles8 as follows: acl
µ = bµ and bcl

µ = a−1
µ . After this map we have a

world-sheet surface that looks like figure 3a. For computational convenience we then use

once more the identities of [18] to rewrite the result in terms of the open string Schottky

groups (generated by the Sµ’s in (3.22)). In the non-compact case, this computation was

performed in [19, 25] and the result for the partition function in the open string channel is

Zg(F )|uncomp. =

[
g∏

i=0

√
Det (1 − G−1Fi)

]∫
[dZ]g

d∏

a=1

[
e−iπ ~εa·τ ·~εa det (τ)

det (T~εa)
Rg (~εa · τ)

]
.

(3.23)

Here τµν is the usual period matrix (written in the open string channel) and det is the

determinant over the “loop” indices µ , ν = 1, 2, . . . , g; T~εa is a twisted generalization of

7We have endowed the quantities in the closed string channel with a suffix “cl”; those without any suffix

will refer to the open string channel, if not otherwise specified.
8In the closed string parametrization, figure 2b, we define the bcl

µ -cycles to be the segments between w

and Scl
µ (w), while the acl

µ -cycles are the contours around the repulsive fixed points χ̄µ clockwise oriented.

In a similar way, in the open string parametrization, the b-cycles are the segments between w and Sµ(w),

while the a-cycles are the contours around the ξµ’s clockwise oriented.

– 14 –



J
H
E
P
0
4
(
2
0
0
7
)
0
3
0

the period matrix

(T~εa)ν̂µ̂ = 1
2πi

Sν̂(w)∫
w

Ω̂~εa

µ̂ (z)dz , where Ω̂~εa

µ̂ (z) =
[
Ω~εa·τ

µ̂ (z)e
2πi
g−1

~εa·~∆z

]
(3.24)

(T~εa)ν̂g = (T~εa)gµ̂ = 0 , and (T~εa)gg = e2πi(~εa
·τ)g−1

e2πi~ea
g−1

.

We will also use T̃~εa to indicate the (g − 1) × (g − 1) block of T~εa which has indices

µ̂, ν̂ = 1, . . . , g − 1. The Prym differentials Ω~ea·τ
µ in this equation have the same functional

form of those in (3.11), but with the following changes:

~εa → ~εa · τ , (χ̄ , χ) → (ξ, η) , Scl
µ → Sµ . (3.25)

~∆z is the vector of Riemann constants (or Riemann class) defined with respect to the base

point z. When we change the base point, ~∆ changes in a simple way determined by the

usual Abelian differentials ω

~∆(z) = ~∆(z0) −
g − 1

2πi

∫ z

z0

~ω . (3.26)

Then it is easy to see that the differentials Ω̂~εa
in (3.24) are twisted only along the aµ-cycles

(of the open string channel) with phases e−2πiεa
µ . The identities necessary to rewrite (3.4)

as (3.23) are eqs. (13), (14) and (16) of [19]. They imply also that det(T~εa) is invariant

under ~εa → −~εa and can be used to derive the modular transformation of each single Ων̂(z).

In fact to calculate Zg(F ) in the compact case we need to express the matrix Dµ̂ν̂

defined in (3.14) in terms of open string quantities. From [19] we get a relation between the

determinants in the closed and open string parameterization and from there the modular

transformation for each Ων̂ :

det
[
Ων̂(zµ̂)

]
=

1 − Sε·τ
g

1 − Sε
g

det
[
Ω̂ν̂(zµ̂)

]

det T
=

det
[
Ω̂ν̂(zµ̂)

]

det T̃
, (3.27)

where Ω̂ν̂, Tνµ and T̃ν̂µ̂ are 2d × 2d matrices whose elements in the complex basis (where

they are diagonal) are the Ω̂±~εa

ν̂ , (T±~εa)νµ and (T̃±~εa)ν̂µ̂ defined in eq. (3.24). The deter-

minants det are taken only over the indices µ̂, ν̂ = 1, . . . , g− 1 and the superscripts for the

matrices Sg remind that the eigenvalues are either εg or (ε · τ)g. We can single out each

differential Ων̂ simply by integrating the l.h.s. of (3.27) on the variables zµ̂ with µ̂ 6= ν̂

along the acl
µ̂ -cycles and using the normalization property of the Ων̂ ’s:

∮
acl

µ̂
Ων̂ = 2πiδµ̂ν̂ .

The r.h.s. of (3.27) is thus integrated along the corresponding bµ̂-cycles and we get

Ων̂(z) =

g−1∑

ρ̂=1

Ω̂ρ̂(z)T̃−1
ρ̂ν̂ , ν̂ = 1, 2, . . . , g − 1 . (3.28)

where the inverse of T̃ in the last step is over both the loop and the space-time indices.

Notice that this is the natural generalization of the usual modular property of the Abelian
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Figure 4: This figure represents the special case g = 2 of the partition function depicted in figure 3.

Notice that for this case we choose a slightly different the world-sheet parametrization (4b) with

the respect to the general case: we choose to have ξ1 = ∞ and η1 = 0 and to swap the order of ξ2

and η2.

differentials to the twisted case of Prym differentials, where the matrix T̃ plays the role of

the period matrix.

Now we can write the generalization of (3.23) to the case of toroidal compactification

Zg(F ) =

[
g∏

i=0

√
Det (1 − G−1Fi)

]∫
[dZ]g

∑

m

δ[(1 − Sµ)αµ
0 ] (3.29)

× exp



πi

g−1∑

µ̂,ν̂=1

αµ̂
0GS−1/2

µ̂ Dµ̂ν̂S1/2
ν̂ αν̂

0





d∏

a=1

[
e−iπ ~εa·τ ·~εa det (τ)

det (T~εa)
Rg (~εa · τ)

]
,

where the matrix D of (3.14) is written in terms of the open string variables:

Dµ̂ν̂ =
1

2πi
S−1/2

µ̂

[∫

a−1
µ̂

− 1 − Sµ̂

1 − Sg

∫

a−1
g

]
Ων̂(z)dz S−1/2

ν̂ , (3.30)

and Ων̂ is given in terms of the open string channel Prym differentials Ω̂ρ̂ by eq. (3.28).

The complication of this formula lies in the fact that it is not algebraic since, contrary

to what happens in the untwisted case, there are still various integrals that we are not able

to perform in general. On the other hand it is written in a form that is particular useful

in the study of the degeneration limits as we will now see.

4. Yukawa couplings from the partition function

4.1 The uncompact case

For g = 2, the eq. (3.29) describes the twisted bosonic partition function depicted in

figure 4. In the world-sheet parametrization, we choose to fix ξ1 = ∞ and η1 = 0 for the

first pair of disks and ξ2 = 1 and η2 = η for the second pair. Moreover figure 4b differs

from figure 3b with g = 2 because we have changed the role of the repulsive and attractive

points of the Schottky generator S2, amounting to send S2 into S−1
2 ; this has been done to

follow usual conventions for the open string, but has the price that from now on ε2 will be

the opposite of the one used in the previous sections.

We now will focus on the degeneration limit depicted in figure 1b that is captured by

the following region of the world-sheet moduli space

0 < k1 < k2 ¿ η ¿ 1 . (4.1)
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The formalism derived in the previous section is particularly suitable for studying quanti-

tatively the limit (4.1), since in this approximation we need to keep only the first terms in

all the Schottky series or products. The aim of this section is to focus on the uncompact

case and compute explicitly the leading order contribution to (3.23) as function of the

world-sheet moduli and the background fields. Then, as anticipated in the Introduction,

we will obtain by factorization the coupling among three twists fields. Notice that the

limit (4.1) is similar to that studied in [25], where the twisted string partition function was

connected to the field theory Euler-Heisenberg effective action induced by a charged scalar.

The main difference is that now we do not take any scaling for the εµ’s.

As a first step, let us write all the objects entering in (3.23) at the first orders in the

limit (4.1). The Schottky product R2(ε · τ) is just one at the leading order, so we need to

focus only on T~ea and τ

ζ~ε·τ
1 (z) ' E1

z
+

[
(1 − E1)

(
1

z − z0

)
+ (1 − E1)

(
E1

z − k1z0
− E1

z

)]
, (4.2)

ζ~ε·τ
2 (z) ' E2

z − η
− E2

z − 1
+ (1 − E2)

(
1

z − z0
− 1

z − 1

)

+

[
E1E2

z − k1η
− E1E2

z − k1
+ (1 − E2)

(
E1

z − k1z0
− E1

z − k1

)]
,

Ei = e2πi(ε1τ1i+ε2τ2i) , τ ' 1

2πi

(
ln k1 ln η

ln η ln k2

)
,

2πi~∆z '
{
− ln k1

2
+ iπ − ln z , − ln k2

2
+ iπ + ln

(
z − 1

z − η

z − k1

z − k1η

)}
.

The first line is obtained from (3.15) with the substitution (3.25), where we kept only the

identity and S1 in the Schottky sums since each term in the square parenthesis in (3.15) is

of order
∏

µ k
Nµ
µ . Actually at first sight the terms related to the element S1, are sub-leading

in the limit (4.1), but we need to keep them since they yield a finite contribution to the

integral (3.24). After we reduced the Schottky series to the sum of these few terms, we are

free to neglect also the terms that contain an explicit z0 dependence, since we known that

they do not contribute to Ω. Now we need to evaluate the integral (3.24) in the limit (4.1),

where the integrand is just a sum of five terms that have branch-cuts in {0, ηk1, k1, η, 1}.
We take the arbitrary point w in (3.24) to coincide with η. With this choice all the integrals

take the following form

I(x) ≡ −
∫ η

k1η

dz

z − x

(
z − 1

z − η

z − k1

z − k1η

)ε2 (
1

z

)ε1

, (4.3)

where x = {0, ηk1, k1, η, 1}. Since z ¿ 1 we can approximate z − 1 just with −1 and

after a change of variables that brings the region of integration to the interval [0, 1],

the integral (4.3) coincides with the integral representation of the Appell Hypergeometric

functionF1

1∫

0

ta−1(1 − t)c−a−1(1 − ty1)
−b1(1 − ty2)

−b2dt =
Γ(a)Γ(c − a)

Γ(c)
F1(a; b1, b2; c; y1, y2) . (4.4)
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At this point we have to extract the leading order contribution in the F1’s. This is a some-

what delicate step because in the limit (4.1) both yi in (4.4) tend to one, so the standard

series representation of F1 is not useful. However the two yi’s scale in an ordered fashion. In

fact from (4.3) we see that we can pose y1 = (1−k1)/(1−k1/η) and y2 = (1−k1) so, in the

limit (4.1), we have |1−y2| ¿ |1−y1|. In this case we can use the following approximation

F1(a; b1, b2; c; y1, y2) ∼ B(c−b1−b2−a, a)

B(a, c−a)
+(1−y1)

−b1(1−y2)
c−b2−a Γ(c)Γ(a + b2 − c)

Γ(a)Γ(b2)

+(1 − y1)
c−b1−b2−a Γ(c)Γ(c − b2 − a)Γ(b1 + b2 + a − c)

Γ(a)Γ(c − a)Γ(b1)
, (4.5)

where B(a, b) is the Euler beta function. It is convenient to introduce the more symmetric

variables [32]

q1 = k1/η = e−t1/α′

, q2 = k2/η = e−t2/α′

, and q3 = η = e−t3/α′

, (4.6)

where the ti are directly related to the Schwinger proper times for the propagators depicted

in figure 1c. In this variable, the degeneration limit becomes q1 < q2 < q3 ¿ 1. By using

eqs. (4.5) and (4.3) into eqs. (4.2) and (3.24) and also (4.10), we get a very symmetric

expression

det (T~εa) ' − 1

4π2

{[
Γ(−εa

1)Γ(−εa
2)Γ(εa

1 + εa
2)q

εa
1/2

1 q
εa
2/2

2 q
−εa

1/2−εa
2/2

3 (4.7)

×
(
εa
1q

−εa
1

1 + εa
2q

−εa
2

2 − (εa
1 + εa

2)q
εa
1+εa

2
3

) ]
+

[
εa
i ↔ −εa

i

]}
,

where the last square parenthesis means that we have to sum a contribution where ε1 , ε2

have everywhere the opposite sign. From now on we choose both ε’s to be positive, then

the dominant term in the above expression is

det (T~εa) ' 1

4π2

[
Γ(εa

1)Γ(εa
2)Γ(1 − εa

1 − εa
2)q

−εa
1/2

1 q
−εa

2/2
2 q

−εa
1/2−εa

2/2
3

]
+ . . . , (4.8)

where the terms neglected do not contribute to the correlator among three twist fields σε

but are relevant for the couplings with excited twist fields. Let us know pose ε3 = 1−ε1−ε2

so that the three parameters εi satisfy the relation that if often considered in the twist field

couplings
∑3

i=1 εi = 1. By using (4.8) and (4.2) into the integrand of eq. (3.23) we have

Z2(F )|uncomp. '
2∏

i=0

[
Det

(
1 − G−1Fi

)
(

d∏

a=1

sinπεa
i+1

)]1/2 ∫ 3∏

i=1

[
q
εi−ε2i
i

Γ(1 − εi)

Γ(εi)

]1/2

×
(

1

ln q1 ln q2 + ln q1 ln q3 + ln q2 ln q3

)13−d 3∏

i=1

dqi

q2
i

, (4.9)

where we used the approximate expression for [dZ]g=2 [32] and the identity

Γ(z)Γ(1 − z) =
π

sin πz
. (4.10)
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Now we are in the position of performing the last step and factorize the degenerate surface

in figure 1b into its constituents, as depicted in figure 1c. In this computation we will

ignore all the terms that do not depend on the world-sheet moduli. In the next section

we will see that these normalizations combine nicely with others terms originating from

the zero-mode contributions. The factors of q
εi/2−ε2i /2
i in (4.9) and the measure dqi/q

2
i

present in the untwisted [dZ]g=2 take a simple form in the variables (4.6) and yield the

measure dti exp
[
−M2

εi
ti

]
, where Mεi

is exactly the mass of the twisted tachyon (2.8) for

each εi. This term together with the leading order of the period matrix determinant have

a very simple space-time interpretation: they are just a representation of the three massive

propagators, with the momentum conservation present in the vertices enforced

∫ (
3∏

i=1

dti

) ∑
i exp

[
−M2

εi
ti

]

(t1t2 + t1t3 + t2t3)13−d
=

∫ (
3∏

i=1

d26−2dpi
1

p2
i + M2

εi

)
δ(

∑

i

pi) . (4.11)

Thus if we compare eq. (4.9) and figure 1c we can obtain an explicit expression for the

square of the string vertex containing three twists fields. In formulae (and, for the moment,

neglecting the normalization) we get

〈σε1σε2σε3〉 =
3∏

i=1

[
Γ(1 − εi)

Γ(εi)

]1/4

. (4.12)

This result agrees with previous results [5, 8].

4.2 Twist field couplings on a T 2

The new ingredient in the toroidal partition function (3.29) is the exponential due to the

zero-mode contribution. This exponential depends both on the twisted period matrix T~εa

we have already encountered in the previous section and on new integrals of the Prym

differentials. In the two loop case (3.30) simplifies since in this case there is only one

regular Prym differential and one element in the matrix D11 ≡ D

D =
1

2πi

S−1
1

(1 − S2)2

[
(1 − S2)

∫

a−1
1

− (1 − S1)

∫

a−1
2

]
(1 − Sε·τ

2 )Ω̂(z)

det T
dz ; (4.13)

moreover in (3.29) α0 ≡ αµ=1
0 is the left moving momentum (2.13) running in the first

loop. Each integral over the a1 and the a2 cycle does not follow a close path because of

the monodromies of Ω̂. However, from our analysis in the closed string channel (3.12),

we know that the combination of integrals in the square parenthesis is independent of

the starting point. Thus this combination should represent a closed path on the branched

Riemann surface. In fact, if we follow the cycle a−1
2 , we have to through the cut B2, and the

integrand is multiplied by S2. So it is smoothly connected to the last integral S2

∫
a−1
1

and

picks a phase S1 when passes through the cut B1 following a−1
1 . Then the result is smoothly

connected to the second integral after we transformed the anti-clockwise orientation of a−1
2

into the clockwise one (a2). In presence of the cut along B2 we have S1

∫
a2

= −S1S2

∫
a−1
2

.

Repeating the same steps we see that the third and last integral brings back the integrand
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Figure 5: This represents the path of integration C resulting from the combination of the integrals

in the square parenthesis of (4.13). Starting from the dot and following the arrows one can check

that this is a closed circuit on the branched Riemann surface. The ε1-cut (ε2-cut) are along the

border B1 (B2).

on the sheet where we started from, thus showing that the path of figure 5 is closed. At

leading order in the limit (4.1), the integrand Ω̂ is defined through the expansions in (4.2),

where this time we can neglect all the terms in the square parenthesis. In fact, contrary to

what happened in (4.3), the path of integration depicted in figure 5 never comes close to

the points 0 and η = q3. After we truncated the integrand in (4.13) at the first order we

are free to deform the contour to the real axis obtaining
[
(1 − S1)

∫

a−1
2

− (1 − S2)

∫

a−1
1

]
= (1 − S1)(1 − S2)

∫ q3

0
. (4.14)

By using this relation in (4.13) we have

D = − 1

2πi

1 − S−1
1

1 − S2

f

det T
, (4.15)

where the function f is the integral between 0 and q3 of the Prym differential (1− Sε·τ
2 )Ω̂

approximated to the first order. From (4.2) and using that z ¿ 1, we have

f(ε) ∼ q
− ε1

2
1 q

− ε2
2

2 q
− ε1+ε2

2
3

∫ q3

0

[ (
qε1
1 qε1+ε2

3 − 1
) qε2

2 qε1+ε2
3

z − q3
(4.16)

−
(
qε2
2 qε1+ε2

3 − 1
) qε1

1 qε1+ε2
3

z

]
eπi(ε1+ε2)dz

(q3 − z)ε2zε1
,

where f(ε) indicates the first component of the space-time matrix f that is diagonal in

the complex basis. The other component is, of course, f(−ε) where the signs of all twists

are reversed. After the change of variable y = z/q3, this integral reduces to the integral

definition of the Euler Beta. Then, by using (4.10), we obtain a simple expression for D,

valid in the limit (4.1)

D ∼
{

sin(πε1 + πε2) sin (πε1)

π sin (πε2)
q
ε1/2
1 q

ε2/2
2 q

−ε1/2−ε2/2
3 Γ(−ε1)Γ(−ε2)Γ(ε1 + ε2)

×
(
ε1q

−ε1
1 + ε2q

−ε2
2 − (ε1 + ε2)q

ε1+ε2
3

)

−2πi det T~ε
, εi ↔ −εi

}
. (4.17)
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By using (4.7), one can check that

D(ε) − D(−ε) = −2i
sin(πε1) sin(πε1 + πε2)

sin(πε2)
, (4.18)

which is consistent with the general property (3.21).9

The first order of the qi → 0 limit describes the factorization depicted in figure 1c. We

can now use the result we have and check that the leading term in the exponential (4.13)

does not depend on the qi’s. By using also (3.18) and (3.19) we obtain

eq. (4.13) ∼ exp

{
−π

2
(m1+Ūm2)

[
sin(πε1) sin(πε1+πε2)

sin(πε2)

|i(f1− T1) + T2|2
T2U2

]
(m1+Um2)

}
.

(4.19)

In the T 2 case under analysis, it is easy to relate the eigenvalues of Sµ and the phases εµ

e2πiε2 =
T − f0

T̄ − f0

T̄ − f2

T − f2
, e2πiε1 =

T − f1

T̄ − f1

T̄ − f0

T − f0
. (4.20)

From this one can check that in the square parenthesis in (4.19) all terms containing the

Kähler moduli T1 and T2 disappear and one has

[
sin(πε1) sin(πε1 + πε2)

sin(πε2)

|i(f1 − T1) + T2|2
T2

]
=

|f1 − f0||f1 − f2|
|f2 − f0|

. (4.21)

Thus at the leading order, the open string channel partition function (3.29) becomes

Z2(F ) '
√

G eφ10

2∏

i=0

[
Det

(
1 − G−1Fi

)
(

d∏

a=1

sin πεa
i+1

)]1/2 ∑

m

δ[(1 − Sµ)αµ
0 ]

× exp

{
−π

2
(m1+Ūm2)

|f1 − f0||f1 − f2|
|f2 − f0|

1

U2
(m1+Um2)

}
(4.22)

×
3∏

i=1

[
Γ(1 − εi)

Γ(εi)

]1/2 ∫ (
3∏

i=1

d26−2dpi
1

p2
i + M2

εi

)
δ(

∑

i

pi) ,

where we wrote explicitly also the usual Fi-independent normalizations contained in [dZ]2:

the volume (
√

G) and the dilaton factors (eφ10). It is useful to rewrite the latter in terms

of the effective d-dimensional dilaton according to e2φ10 =
√

Ge2φd . Then the product over

sin πεi can be written as follows

3∏

i=1

d∏

a=1

sin2 πεa
i =

3∏

i=1

Det

(
1 − Si

2

)
=

2∏

i=0

Det

(
Ri+1 − Ri

2

)
, (4.23)

where in the last step we used the fact the the reflection matrices Ri are even dimensional

and have unit determinant (we also take a cyclic convention R3 ≡ R0). By using (3.1)

9Remember that here ε2 is the opposite of the one used in the previous section, as discussed at the

beginning of section 4.1.
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and (4.23) into (4.9), we see that this determinant combines nicely with the Born-Infeld

normalization yielding

2∏

i=0

[
Det

(
1 − G−1Fi

) d∏

a=1

sin πεa
i+1

]1/2

=
(
Det G

)−3/4
2∏

i=0

[
Det (Fi+1 − Fi)

]1/4
. (4.24)

Let us now analyze the second line of (4.22) and, for sake of simplicity, suppose that

all (fi − fj)’s which are integers as consequence of (2.1)–(3.1), are coprime. Then the

Kronecker delta implies that

mM
1 I10 + mM

2 I20 = 0 ⇒ mM
1 ≡ mM = I20h

M , (4.25)

where Iµ0 = fµ − f0 = pµ − p0, hM ∈ Z and M = 1, 2. So the exponential terms form

a 2-dimensional Theta function whose modular parameter contains the complex structure

and the product I = |I10I02I21|; notice that I = 2I ′ is even because it is the absolute value

of the product of three integers summing to zero. At this point, we rewrite the sum on h1

by performing a Poisson resummation

∞∑

h1=−∞
e−πA(h1)2+2πh1As =

1√
A

eπAs2
∞∑

h1=−∞
e−π(h1)2/A−2πih1s . (4.26)

The second line of (4.22) becomes

√
U2

I ′

∑

h1,h2

exp

[
−π(h1)2U2

I ′ + 2πih1h2U1 − πI ′U2(h
2)2

]
. (4.27)

In this form we can decouple the two sums. However, it is first convenient to break the

sum over h1 in I ′ sums over integers of the form I ′h̃1 + `′, with `′ = 0, 1, . . . ,I ′ − 1. Then

we can introduce an other set of integers r, s: h̃1 − h2 = r and h̃1 + h2 = s, which are

however constrained to have the same parity. Therefore the sum over r, s breaks into two

parts, one over r = 2k, s = 2l and the other over r = 2k + 1, s = 2l + 1. This second sum

can be obtained from the first one simply by replacing `′ with I ′ + `′. Then we can finally

rewrite (4.27) in terms of 1-dimensional Theta functions:10

√
2U2

I

I−1∑

`=0

∑

l,k

exp

[
πiI

(
l +

`

I

)2

U

]
exp

[
−πiI

(
k +

`

I

)2

Ū

]
. (4.28)

Thus we see that in the limit (4.1) the full twisted partition factorizes into a sum of

diagrams like the one depicted in figure 1c, and each diagram is labeled by a different `.

However this sum was expected and is due to the finite dimensional degeneracy of each

twisted string state, as was quickly mentioned in section 2 in relations to the zero-modes.

From a lower dimensional point of view these states are seen as different particles of the

same family, since they have the same quantum numbers. Since for each twisted string this

10Notice that now the summation index ` runs from 0 to I − 1.
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degeneracy is exactly |Iij |, the number of possible three point functions is I in agreement

with our interpretation of (4.28). Thus we can focus on each value of ` separately and

derive from (4.22) the expression for the 3-twist field correlator on a T 2

〈σε1σε2σε3〉` =
3∏

i=1

[
Γ(1 − εi)

Γ(εi)

]1/4

eφd/2(2U2)
1/4

∞∑

l=−∞
exp

{
πiI

(
l +

`

I

)2

U

}
, (4.29)

where the overall normalization assumes a simple form since F -dependent part of (4.24)

exactly cancels the factor of
√
I in (4.28). For small ε we reproduce the result of [22],

including the U-dependent normalization. If we exchange T and U in (4.29), we pass to

the T-dual setup of D-branes at angle and find agreement with the results of [7, 8]. In [7],

the amplitudes corresponding to different families were labeled by three integers i, j, k, but

it can be checked that their set of Yukawa couplings corresponds exactly to our (4.29).
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A. The twisted sewing on T 2d

In the operator formalism all the basic building blocks like string vertices and propaga-

tors are written in terms of the Schottky group. In both the closed and the open string

description this group is generated by 2 × 2 matrices that act on the complex plane as

follows

γ(z) =

(
a b

c d

)(
z

1

)
=

az + b

cz + d
, with ad − bc = 1 . (A.1)

In the string vertices the bosonic oscillators an or ãn are naturally contracted with the

following infinite dimensional representation of the Schottky group (here n,m 6= 0)

Dnm(γ) =
1

m!

√
m

n
∂m

z γn
∣∣∣
z=0

D00 = − ln d , (A.2)

Dn0 =
1√
n

γn(0) ,

D0m =

√
m

2m!
∂m

z ln γ′
∣∣∣
z=0

=
1√
m

(
1

γ−1(∞)

)m

.

As already noticed in the main text, this is not a true representation when the zero modes

are included. In fact the product law is

Dnm(γ1γ2) =
∞∑

l=1

Dnl(γ1)Dlm(γ2) + Dn0(γ1)δm0 + D0m(γ2)δn0 . (A.3)
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This is the source of some complication in the zero-mode computation of the twisted planar

partition function and in this appendix we want to give some details on the technical steps

leading to (3.7).

The closed string vertex describing the emission of g+1 off-shell strings can be written

in terms of g + 1 transformations (A.1) Vi

Vg+1 ∼
g∏

i=0




∑

ni,wi

〈ni, wi; 0|


 exp


−

g∑

i<j=0

∞∑

k,l=0

ai
kDkl(ΓV −1

i Vj)Gaj
l


 (A.4)

× exp


−

g∑

i<j=0

∞∑

k,l=0

ãi
kDkl(ΓV̄ −1

i V̄j)Gãj
l


δ

( g∑

i=0

ai
0

)
δ
( g∑

j=0

ãj
0

)
,

where the δ’s should be interpreted as Kronecker delta’s and we neglected the overall nor-

malization. Here the Vi(z)’s are local coordinates around each puncture which is placed at

Vi(0) = zi, Γ is the inversion Γ(z) = 1/z, and since we are working in the parameterization

of Fig 2 the right-moving coordinates are just the complex conjugate of the left moving

ones. Of course when (A.4) is saturated with g+1 on-shell states Vg+1 in order to compute

a tree-level amplitude the dependence on the local coordinates disappears. However our

aim is to saturate all legs of (A.4) with boundary states; in this case the Vi’s play a role,

because they yield the generators of the Schottky group (3.2) that defines the surface of

figure 2. Also the boundary states are written in terms of the matrices Dnm

|Bi〉 ∼
√

Det(1 − G−1Fi)

∫ 1

0

dx

x(1 − x)
δd(ã0 + Ria0)|Bi(x)〉 , (A.5)

|Bi(x)〉 = exp


−

∞∑

n,m=0

ã†nDnm(P (x))GRia
†
m


e2πi

√
α′(Ai)M wM

i

(
∑

n,w

|n,w; 0〉
)

,

where again we neglected all Fi independent normalizations, which can be found in [17]

or restored at the end by requiring that the partition function is proportional to the total

volume and the appropriate power of the string coupling. The phase depending on the

Wilson line Ai is just the rewriting in terms of the winding modes of the usual term

exp{iAM

∮
dxM} appearing in the open string action for constant gauge fields. With a

small abuse of notation we indicate with |Bi〉 both the standard boundary state (2.12)

whose effect is just to identify left and right moving modes and the boundary state (A.5)

that contains also a string propagator. This propagator is contained in the transformation

P (x), which is also of the type (A.1) and depends on a single real variable x. As we will

see the specific form chosen for P (x) and the Vi’s is not relevant for our purposes.

The insertion of the first boundary states |B0〉 has the effect of mixing left and the right

moving modes. This can be easily seen for the non-zero mode sector, where the boundary

state simply transforms the ã0
m into creation operators a0†

m . When the scalar product over

the i = 0 Hilbert space is computed, the exponential factors at the left containing the

destruction modes a0
m are glued together with the exponentials at the right containing the

creation modes a0†
m. The zero-mode sector has to be treated separately and by using the
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momentum and winding conservations present in (A.4) we can re-express a0
0 in terms of the

aµ
0 , with µ = 1, . . . , g. Then by using the product law (A.3) and the properties summarized

in appendix B of [15] we get a vertex describing the emission of g closed strings from a disk

represented by the boundary state |B0〉

Vg;1 ∼
g∏

i=1




∑

ni,wi

〈ni, wi; 0|


 δ




g∑

µ=1

(
aµ

0 + R−1
0 ãµ

0

)

 exp


−

g∑

µ,ν=1

aµ
kDkl(UµV̄ν)GR−1

0 ãν
l




×exp


−

g∑

µ<ν=1

aµ
kDkl(UµVν)Gaν

l


 exp


−

g∑

µ<ν=1

ãµ
kDkl(ŪµV̄ν)Gãν

l


 , (A.6)

where we have understood the sums over the indices k, l from 0 to ∞ and followed the no-

tation of [15], where U = ΓV −1. We also used the freedom to redefine the local coordinates

Vµ by a similarity transformation to eliminate any dependence on V0.

At this point we can insert the remaining g boundary states in (A.6) and use again the

properties of Canonical Forms [15] and eq. (A.3) to rewrite the exponentials in a normal

ordered way

Vg+1;0 ∼
g∏

i=1




∑

ni,wi

〈ni, wi; 0|


 δ




g∑

µ=1

(1 − Sµ) aµ
0


 exp


−1

2

g∑

µ6=ν=1

aµ
kDkl(UµVν)Gaν

l




× : exp




g∑

µ,ν=1

aµ
kDkl(Uµ

˜̄Vν)GSνaν†
l


 : (A.7)

× exp


−1

2

g∑

µ6=ν=1

aµ†
k Dkl(

˜̄Uµ
˜̄Vν)GS−1

µ Sνa
ν†
l




g∏

i=1




∑

ni,wi

|ni, wi; 0〉


 ,

where the tilded local coordinates are related to the original ones by Ṽ = V P . Then we

need to compute the scalar products over the oscillator modes of all Hilbert spaces. This can

be done more easily by inserting the identity operator written in terms of coherent states

between the creation and the destruction modes [15]. This has the effect of transforming the

scalar product over the non-zero modes into a Gaussian integral which yields the following

contribution to Vg+1

{Det [G(1 − H)]}−1/2 exp

[
1

2
(B2, B1)(1 − H)−1G−1

(
C2

C1

)]
, (A.8)

where the determinant is over all indices (space-time, loop and oscillator indices). The

definitions of B, C and H are:

H =

(
Dnm(Uµ

˜̄Vν)Sν −Dnm(UµVν)

−Dnm( ˜̄Uµ
˜̄Vν)S−1

µ Sν Dnm( ˜̄UµVν)S−1
µ

)
(A.9)
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(B1)
ν
m =

∑
1≤µ≤g
1≤k<∞

aµ
0G

[
−D0k(Uµ)+D0k( ˜̄Uµ)S−1

µ +δµνD0k(Uµ)
]
Dkm(Vν)+aν

0GD0m(Vν)

(B2)
ν
m =

∑
1≤µ≤g
1≤k<∞

aµ
0G

[
D0k(Uµ)−D0k(

˜̄Uµ)S−1
µ +δµνD0k( ˜̄Uµ)S−1

µ

]
Dkm( ˜̄Vν)Sν +aν

0GD0m( ˜̄Vν)

(C2)
ν
m =

∑
1≤µ≤g
1≤k<∞

Dmk(Uν)G
[
−Dk0(Vµ)+SµDk0(

˜̄Vµ)+δµνDk0(Vµ)
]
aν

0+Dm0(Uν)Gaν
0

(C1)
ν
m =

∑
1≤µ≤g
1≤k<∞

Dmk( ˜̄Uν)GS−1
ν

[
Dk0(Vµ)−Dk0(

˜̄Vµ)Sµ+δµνDk0(
˜̄Uµ)Sµ

]
aµ

0 +Dm0(
˜̄Uν)Gaν

0 .

Notice that in the expressions for B2 and C1, that follow from (A.7) and (A.3), using also

(3.6) , the string propagators P contained in the tilded local coordinates are not always

paired with the corresponding space-time matrix S. This is the origin of the subtlety

mentioned in section (3.1). At this point one needs to combine the result (A.8) with the

zero-mode part of eq. (A.6) and keep following the steps of appendix D of [15], now also

with the space-time matrices S. In the present case the combination of local coordinate

representing the generators of the Schottky group is Scl
µ ≡ ˜̄VµUµ. By using many times the

group property (A.3) we arrive to formulae analogous to (D.21) and then (D.24) of [15].

In particular, we find that the matrix C
(1)
µν in our (3.7) is

C(1)
µν =

(
D00(Sµ) + D00(S

−1
µ

)
)δµν + (−µ)

∑

α

(−ν)D0n(Sµ)Dnm(Tα)Dm0(Sν)TαSν

−(−µ)
∑

α

′(+ν)D0n(Sµ)Dnm(Tα)Dm0(S
−1
ν )Tα

−(+µ)
∑

α

′(−ν)D0n(S−1
µ )Dnm(Tα)Dm0(Sν)S−1

µ TαSν

+(+µ)
∑

α

(+ν)D0n(S−1
µ )Dnm(Tα)Dm0(S

−1
ν )S−1

µ Tα , (A.10)

where now the indices n,m run from 1 to ∞ and the superscript “cl” on the elements Sµ

and Tα of the Schottky groups is understood. The sums with the superscripts (±µ) at

the left and (±ν) at the right are taken over all elements Tα of the Schottky group which

contain neither S±n
µ as leftmost factor nor S±n

ν as rightmost factor for any positive integer

n; moreover the prime on the sum means that the identity is absent when µ = ν. Finally

the matrix Tα is the space-time analogue of the Schottky element Tα and is the product

of the Sµ corresponding to the generators contained in Tα. Then by using the explicit

expressions for the D’s (A.2), one can check that (A.10) is just the series expansion of the

following logarithms

C(1)
µν = −δµν ln(aµdµ)+(−µ)

∑

α

(−ν) ln

[
S−1

µ (∞) − Tα(0)

S−1
µ (∞) − TαSν(0)

]
TαSν

−(−µ)
∑

α

′(+ν) ln

[
S−1

µ (∞)−Tα(0)

S−1
µ (∞)−TαS−1

ν (0)

]
Tα−(+µ)

∑

α

′(−ν) ln

[
Sµ(∞)−Tα(0)

Sµ(∞)−TαSν(0)

]
S−1

µ TαSν

+(+µ)
∑

α

(+ν) ln

[
Sµ(∞) − Tα(0)

Sµ(∞) − TαS−1
ν (0)

]
S−1

µ Tα . (A.11)
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Finally one can check that this expression agrees with the one of (3.7) given in terms of

integrals of the differentials ζν ’s when the base point is placed at infinity w = ∞. However,

as proved in the main text, that combination of integrals is independent of this particular

choice, so finally we can write C
(1)
µν as in eq. (3.7).
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